
4068 Vol. 45, No. 14 / 15 July 2020 /Optics Letters Letter

Experimental demonstration of structural
robustness of spatially partially coherent fields in
turbulence
Abhinandan Bhattacharjee1,2 AND Anand K. Jha1,*
1Department of Physics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
2e-mail: arko.hkd@gmail.com
*Corresponding author: akjha9@gmail.com

Received 21 April 2020; revised 4 June 2020; accepted 19 June 2020; posted 22 June 2020 (Doc. ID 395697); published 15 July 2020

Structured fields that are spatially completely coherent have
been extensively studied in the context of long-distance
optical communication, as the structure in the intensity
profile of such fields is used for encoding information. This
method of doing optical communication works very well
in the absence of turbulence. However, in the presence of
turbulence, the intensity structures of such fields start to
degrade because of the complete spatial coherence of the
field, and this structural degradation increases with the
increase in turbulence strength. On the other hand, several
theoretical studies have now shown that the structured fields
that are spatially only partially coherent are less affected
by turbulence. However, to the best of our knowledge, no
such experimental demonstration has been reported until
now. In this Letter, we experimentally demonstrate the
structural robustness of partially coherent fields in the pres-
ence of turbulence, and we show that for a given turbulence
strength, the structural robustness of a partially coherent
field increases as the spatial coherence length of the field is
decreased. ©2020Optical Society of America

https://doi.org/10.1364/OL.395697

In the past few decades, structured fields that are spatially com-
pletely coherent, such as Laguerre Gaussian (LG) and Hermite
Gaussian (HG) modes produced by stable laser resonators [1]
or spatial light modulators (SLMs) [2], have gained importance
due to their implications for optical communication [3–7]. The
structure in the intensity profile of such fields is used for encod-
ing information in the long-distance fiber [8] and free-space
[9–11] optical communication. However, the problem of using
such structured fields in the presence of a turbulent medium
is that the medium introduces random phase fluctuations at
different spatial locations in the field, and due to the perfect
spatial coherence of the field, these random phase fluctuations
result in degradation of the intensity structures of such fields.
As a consequence, the retrieval of information encoded in the
intensity structures becomes difficult. For this reason, the struc-
tures in a spatially perfectly coherent field become unsuitable for
optical communication in turbulent environments.

On the other hand, it is now known that a spatially par-
tially coherent field is less affected by turbulence [12–16].
Furthermore, theoretical studies have now shown that in the
presence of turbulent environments, the structures in the
intensity profiles and in the cross-spectral density functions
of a spatially partially coherent field degrade less in compari-
son to the intensity structures of a spatially perfectly coherent
field [17–21]. This implies that the structural robustness of
the intensity profiles and the cross-spectral density functions
of a spatially partially coherent field could be utilized towards
optical communication even in the presence of a turbulent
environment. Although in the past few years, there has been a
growing interest in engineering various structured fields that are
spatially partially coherent [22–26], to the best of our knowl-
edge, no experimental demonstration of structural robustness
of the cross-spectral density function of such fields in turbu-
lence has been reported so far. In this Letter, we experimentally
demonstrate structural robustness of partially coherent fields in
turbulent environments. Simulating planar turbulence with the
help of an SLM, we show that for a given turbulence strength,
the structural robustness of a partially coherent field increases as
the spatial coherence length of the field is decreased.

Figure 1 shows the schematic of our experimental setup and
also illustrates how our structured partially coherent source
propagates through a planar simulated turbulence and gets
detected. In our experimental demonstrations, we use the
scheme in Ref. [27] for generating spatially partially coherent
fields with structures in their cross-spectral density functions.
A planar, monochromatic, spatially completely incoherent
primary source is kept at the back focal plane z=−F of a
lens located at z= 0. The central wavelength of the source
is λ0 = 2π/k0, where k0 is the magnitude of the wavevector.
The combination of the primary incoherent source along with
the lens constitutes our structured spatially partially coherent
source. The structured partially coherent field passes through
a planar simulated turbulence kept at z= z′ and then gets
observed by the detection system consisting of a converg-
ing lens of focal length f kept at z= zd and a camera kept at
z= z f = zd + f . The detection system essentially measures
the cross-spectral density function of the field at z= zd . We
represent the transverse position coordinates at z=−F , z= z′,
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Fig. 1. Schematic of the experimental setup illustrating propagation
of our structured partially coherent field through a turbulent medium.

z= zd , and z= z f by ρ ′′ ≡ (x ′′, y ′′), ρ ′ ≡ (x ′, y ′), ρ ≡ (x , y ),
and ρ f ≡ (x f , y f ), respectively. The intensity of the primary
source at z=−F is given by I (ρ ′′, z=−F ). Therefore,
the cross-spectral density function Ws (ρ

′
1, ρ
′
2; z= z′) of our

partially coherent field at z= z′ can be shown to be [27]

Ws (ρ
′

1, ρ
′

2; z= z′)→Ws (1ρ
′
; z= z′)

=
A

F 2

∫∫
I (ρ ′′; z=−F )e−i k0

F ρ′′·1ρ′dρ ′′,

(1)

where 1ρ ′ = |ρ ′2 − ρ ′1|. We note that the cross-spectral den-
sity function Ws (ρ

′

1, ρ
′

2; z= z′) of our source depends on
the transverse coordinates only through their difference 1ρ ′.
Therefore, we write it as Ws (1ρ

′
; z= z′). Such sources are

referred to as statistical homogeneous sources [28] or even
spatially stationary sources [27]. The cross-spectral density
W(ρ ′1, ρ

′
2; z= z′) at z= z′ right after the turbulence plane is

given by W(ρ ′1, ρ
′

2; z= z′)=Ws (1ρ
′
; z= z′)Wt(ρ

′

1, ρ
′

2),
where Wt(ρ

′

1, ρ
′

2) is the cross-spectral density induced due to
the turbulence. According to the Kolmogorov model,

Wt(ρ
′

1, ρ
′

2)= e−3.44(1ρ
′

r0
)

5
3

. (2)

The quantity r0 is called Fried’s coherence diameter [29,30],
and it quantifies the strength of turbulence. The value of r0
ranges from 0 to∞, with limit r0→ 0 implying infinite turbu-
lence strength and limit r0→∞ implying no turbulence. In
order to show the structural robustness of our partially coher-
ent field in turbulence, we obtain the cross-spectral density
function of the field after it has propagated up to z= zd . Using
Eqs. (1) and (2) and the Wolf propagation equation (section
4.4.3 in Ref. [28]), we find the cross-spectral density function
W(ρ1, ρ2; z= zd )→W(1ρ; z= zd ) at z= zd to be

W(1ρ; z= zd )= e
−3.44(

1ρ

r0
)

5
3

Ws (1ρ; z= zd ), (3)

where

Ws (1ρ; z= zd )=
A
F 2

∫∫
I (ρ ′′; z=−F )e−i k0

F ρ′′·1ρdρ ′′

(4)
is the cross-spectral density function of the field at z= zd in
the absence of turbulence, and 1ρ = |ρ2 − ρ1|. We note
that the cross-spectral density functions W(1ρ; z= zd ) and
Ws (1ρ; z= zd ) depend on the transverse position coor-
dinates only through their difference 1ρ and thus that the

field at z= zd remains spatially stationary with or without
turbulence. Furthermore, we note that Ws (1ρ; z= zd )
remains propagation invariant [27], and therefore it has
the same functional form as that of the cross-spectral den-
sity function Ws (1ρ; z= z′) given in Eq. (1). We note
that since W(1ρ; z= zd ) is spatially stationary, it can be
expressed in terms of the intensity I (ρ f ; z= z f ) at z= z f .
In order to show this, we first write the cross-spectral den-
sity Wl (ρ1, ρ2; z= zd ) at z= zd right after the lens L f as
Wl (ρ1, ρ2; z= zd )=W(1ρ; z= zd )T∗(ρ1)T(ρ2), where

T(ρ)= e i k0
2 f ρ

2
is the transmission function of lens L f [31].

Next, using the Wolf propagation equation [28], we propa-
gate the field from z= zd to z= z f and find the intensity
I (ρ f ; z= z f ) at z= z f plane to be

I (ρ f ; z= z f )=W(ρ f , ρ f ; z= z f )

=

∫∫
W(1ρ; z= zd )e

i k0
f ρ f ·1ρd1ρ. (5)

We Fourier-invert Eq. (5) and write it as

W(1ρ; z= zd )=

∫∫
I (ρ f ; z= z f )e

−i k0
f ρ f ·1ρdρ f . (6)

Thus we see that by measuring the intensity I (ρ f ; z= z f ) at
the focal plane z= z f , one obtains the cross-spectral density
function W(1ρ, z= zd ) at z= zd .

We next present our experimental demonstration of struc-
tural robustness of spatially partially coherent fields in the
presence of turbulence. Figure 1 shows the schematic of the
experimental setup, where the structured partially coherent
source is kept at z= 0. We use an SLM for simulating planar
turbulence at z= z′ [32] and an electron multiplied charged
coupled device (EMCCD) camera for measuring the intensity
at z= z f plane. From Eq. (4), we have that the cross-spectral
density function Ws (1ρ; z= zd ) at z= zd is the Fourier trans-
form of the intensity I (ρ ′′; z=−F ) of the primary incoherent
source. Therefore, in order to generate a spatially partially coher-
ent field with a structured cross-spectral density function, we use
a light emitting diode (LED) array as our primary source. The
array consists of nine LEDs arranged in a 3× 3 grid. The size
of the individual LED is a = 0.58 mm. Figure 2(a) shows the
simulated intensity I (ρ ′′; z=−F ) of our primary incoherent
source at z=−F , while Fig. 2(b) shows the corresponding
cross-spectral density function Ws (1ρ; z= zd ) at z= zd . We
note that the oscillatory features of the cross-spectral density
function in Fig. 2(b) decays over a length scale σc in the trans-
verse direction. Using Eq. (4), it can be shown that σc is decided
by the transverse size a of the individual LEDs at z=−F and

Fig. 2. (a) Simulated intensity of the primary source. (b) Simulated
cross-spectral density Ws (1ρ; z= zd ) of the source at z= zd .
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Fig. 3. Experimentally measured I (ρ f ; z= z f ) with different
transverse coherence lengths at various turbulence strengths.

that it can be written as σc = λ0 F /a (see Ref. [28], section
4.4.4). We take σc as the spatial coherence length of the field.
This definition of the spatial coherence length is consistent
with the definition of temporal coherence length for a multi-
mode continous-wave (CW) laser with a structured temporal
cross-spectral density function [33]. By using lenses of focal
lengths F = 30 cm, 50 cm, and 75 cm in the source configura-
tion, we generate structured spatially partially coherent fields
with σc = 0.33 mm, 0.55 mm, and 0.82 mm, respectively. In
order to simulate turbulence using an SLM kept at z= z′, we
display around 200 random phase patterns on the SLM with
Kolmogorov statistics in a sequential manner at a frame rate of
30 Hz. We set an exposure time of 7 s such that the EMCCD
camera records the entire ensemble of fields corresponding
to the 200 phase patterns. We perform experiments at three
different turbulence strengths r0→∞, r0 = 0.48 mm, and
r0 = 0.34 mm.

In our experiments, we use f = 30 cm, z′ = 20 cm,
zd = 50 cm, and z f = zd + f = 80 cm. Figure 3 shows the
experimentally measured intensity I (ρ f ; z= z f ) at z= z f

for different spatial coherence lengths σc at various turbu-
lence strengths r0. With no turbulence, that is, at r0→∞, the
intensity I (ρ f ; z= z f ) at different σc is same as the intensity
I (ρ ′′; z=−F ) of the primary source shown in Fig. 2(a), apart

Fig. 4. (a) Reconstructed cross-spectral density function W(1ρ; z= zd ) for different transverse coherence lengths at various turbulence strengths.
(b) Plots of one-dimensional cuts along the x direction of W(1ρ; z= zd ) at r0→∞ and r0 = 0.34 mm for different σc .
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from a change in scale. In the presence of turbulence, we find
that as the spatial coherence length σc of the field decreases
from 0.82 mm to 0.33 mm, the degradation in the structural
features of the intensity I (ρ f ; z= z f ) becomes lesser. The
small tilt in the measured intensity in Fig. 3 is attributed to the
imperfections in the alignment of the experimental setup.

Next, using Eq. (6), we reconstruct the cross-spectral density
function W(1ρ; z= zd ) at z= zd from the above measured
intensity I (ρ f ; z= z f ). Figure 4(a) shows the reconstructed
cross-spectral density function W(1ρ; z= zd ) at z= zd
for different σc at various r0. We see that in the absence of
turbulence, that is, at r0→∞, the two-dimensional struc-
ture profile of W(1ρ; z= zd ) is same for all three σc values,
apart from a change in scale. In the presence of turbulence,
we find that the two-dimensional structures suffer degrada-
tion for all three σc values. However, at a given turbulence
strength, the structural degradation becomes less as the spa-
tial coherence length is decreased. We note that in Fig. 4(a),
we have plotted W(1ρ; z= zd ) over different ranges of
1ρ = (1x , 1y ) at different σc . This is so that we can bet-
ter compare the structural degradation at different σc values.
Finally, in order to highlight the main claim of this Letter, which
is that the structural robustness increases as σc in decreased,
we plot in Fig. 4(b) the one-dimensional cross-spectral den-
sity function W(1x ; z= zd ) by taking one-dimensional
cuts of W(1ρ; z= zd ) plots in Fig. 4(a). For each σc , we plot
W(1x ; z= zd ) at r0→∞, and r0 = 0.34 together. These
plots clearly show that the structural robustness of the cross-
spectral density function of a spatially partially coherent field
increases as we decrease the spatial coherence length of the field.

In conclusion, we have experimentally demonstrated struc-
tural robustness of spatially partially coherent fields in the
presence of turbulence. We have shown that at a given turbu-
lence strength, the structural robustness of a partially coherent
field increases with the decrease in the spatial coherence length
of the field. Our work can have important implications for
long-distance optical communication through turbulent envi-
ronments. We note that in our experiments, we have worked
with simulated planar turbulence of strength r0 ranging from
∞ to 0.34 mm. On the other hand, for real atmospheric tur-
bulence, although the typical values of r0 range from 4 mm to
30 mm [3,9,10], the turbulence is distributed and can even
cause amplitude fluctuations. Nevertheless, we expect the main
result of this Letter to remain qualitatively valid even for real
atmospheric turbulence. We further note that the scheme pre-
sented in this Letter for measuring the cross-spectral density
function works only for spatially stationary partially coherent
fields. However, there are non-spatially stationary partially
coherent fields with interesting propagation properties [34].
We expect even these fields to show structural robustness in
turbulence.
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